Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Oncol ; 41(4): 81, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400892

RESUMO

Plectranthus amboinicus leaves were subjected to hydrodistillation to obtain essential oil (EO). Phytochemical analysis using gas chromatography-mass spectrometry revealed a diverse range of compounds in the EO, with p-cymen-4-ol (18.57%) emerging as the most predominant, followed by isocaryophyllene (12.18%). The in vitro antiproliferative activity of EO against breast cancer was assessed in MCF-7 and MDA-MB-231 cell lines. The MTT assay results revealed that EO showed IC50 values of 42.25 µg/mL and 13.44 µg/mL in MCF-7 cells and 63.67 µg/mL and 26.58 µg/mL in MDA-MB-231 cells after 24 and 48 h, respectively. The in silico physicochemical and pharmacokinetic profiles of the EO constituents were within acceptable limits. Molecular docking was conducted to investigate the interactions between the constituents of the EO and protein Aromatase (PDB ID:3S79). Among the EO constituents, 4-tert-butyl-2-(5-tert-butyl-2-hydroxyphenyl)phenol (4BHP) exhibited the highest dock score of -6.580 kcal/mol when compared to the reference drug, Letrozole (-5.694 kcal/mol), but was slightly lesser than Anastrozole (-7.08 kcal/mol). Molecular dynamics simulation studies (100 ns) of the 4BHP complex were performed to study its stability patterns. The RMSD and RMSF values of the 4BHP protein complex were found to be 2.03 Å and 4.46 Å, respectively. The binding free energy calculations revealed that 4BHP displayed the highest negative binding energy of -43 kcal/mol with aromatase protein, compared to Anastrozole (-40.59 kcal/mol) and Letrozole (-44.54 kcal/mol). However, further research is required to determine the safety, efficacy, and mechanism of action of the volatile oil. Taking into consideration the key findings of the present work, the development of a formulation of essential oil remains a challenging task and novel drug delivery systems may lead to site-specific and targeted delivery for the effective treatment of breast cancer.


Assuntos
Neoplasias da Mama , Óleos Voláteis , Plectranthus , Humanos , Feminino , Óleos Voláteis/farmacologia , Óleos Voláteis/análise , Óleos Voláteis/química , Plectranthus/química , Plectranthus/metabolismo , Aromatase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Anastrozol/metabolismo , Letrozol/metabolismo , Simulação de Acoplamento Molecular
2.
J Mol Graph Model ; 127: 108695, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38118354

RESUMO

Overexpression of protein tyrosine phosphatase 1B (PTP1B) is the major cause of various diseases such as diabetes, obesity, and cancer. PTP1B has been identified as a negative regulator of the insulin signaling cascade, thereby causing diabetes. Numerous anti-diabetic medications based on thiazolidinedione have been successfully developed; however, 2,4-thiazolidinedione (2,4-TZD) scaffolds have been reported as potential PTP1B inhibitors for the manifestation of type 2 diabetes mellitus involving insulin resistance. In the present study, we have employed amalgamated approach involving MD-simulation studies (100 ns) as well as Gaussian field-based 3D-QSAR to develop a pharmacophoric model of 2,4-TZD as potent PTP1B inhibitors. MD simulation studies of the most potent compound in the PTP1B (PDB Id: 2QBS) binding pocket revealed that compound 43 was stable in the binding pocket and demonstrated excellent binding efficacy within the active site pocket. MM/GBSA results revealed that compound 43, bearing C-5 arylidine substitution, strongly bound to the target as compared to rosiglitazone with ΔGMM/GBSA difference of -11.13 kcal/mol. PCA, Rg, RMSF, RMSD, and SASA were analyzed from the complex's trajectories to anticipate the simulation outcome. We have suggested a series of 2,4-TZD as possible PTP1B inhibitors based on the results of MD simulation and 3D-QSAR studies.


Assuntos
Diabetes Mellitus Tipo 2 , Tiazolidinedionas , Humanos , Simulação de Dinâmica Molecular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Relação Quantitativa Estrutura-Atividade , Inibidores Enzimáticos/química , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Simulação de Acoplamento Molecular
3.
Drug Discov Today ; 28(12): 103821, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935329

RESUMO

Polycystic ovary syndrome (PCOS) prevails in approximately 33% of females of reproductive age globally. Although the root cause of the disease is unknown, attempts are made to clinically manage the disturbed hormone levels and symptoms arising due to hyperandrogenism, a hallmark of PCOS. This review presents detailed insights on the etiology, risk factors, current treatment strategies, and challenges therein. Medicinal agents currently in clinical trials and those in the development pipeline are emphasized. The significance of the inclusion of herbal supplements in PCOS and the benefits of improved lifestyle are also explained. Last, emerging therapeutic targets for treating PCOS are elaborated. The present review will assist the research fraternity working in the concerned domain to access significant knowledge associated with PCOS.


Assuntos
Hiperandrogenismo , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/diagnóstico , Hiperandrogenismo/complicações , Suplementos Nutricionais , Fatores de Risco
4.
Curr Med Chem ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37711015

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) has gained interest as a therapeutic target for type 2 diabetes and obesity. Besides metabolic signalling, PTP1B is a positive regulator of signalling pathways linked to ErbB2-induced breast tumorigenesis. Substantial evidence proves that its overexpression is involved in breast cancer, which suggests that selective PTP1B inhibition might be effective in breast cancer treatment. Therefore, huge research is being carried out on PTP1B inhibitors and their activity against breast cancer development. To date, only two PTP1B inhibitors, viz. ertiprotafib and trodusquemine, have entered clinical trials. The discovery of selective inhibitors of PTP1B could open a new avenue in breast cancer treatment. In this review, we provide an extensive overview on the involvement of PTP1B in breast cancer, its pathophysiology, with special attention on the discovery and development of various natural as well as synthetic PTP1B inhibitors. This study will provide significant information to the researchers developing PTP1B inhibitors for breast cancer treatment.

5.
Expert Opin Drug Discov ; 18(10): 1151-1167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37592843

RESUMO

INTRODUCTION: The quinolone scaffold is a bicyclic benzene-pyridinic ring scaffold with nitrogen at the first position and a carbonyl group at the second or fourth position. It is endowed with a diverse spectrum of pharmacological activities, including antitumor activity, and has progressed into various development phases of clinical trials for their target-specific anticancer activity. AREAS COVERED: The present review covers both classes of quinolones, i.e. quinolin-2(H)-one and quinolin-4(H)-one as anticancer agents, along with their possible mode of binding. Furthermore, their structure-activity relationships, molecular mechanisms, and pharmacokinetic properties are also covered to provide insight into their structural requirements for their rational design as anticancer agents. EXPERT OPINION: Synthetic feasibility and ease of derivatization at multiple positions, has allowed medicinal chemists to explore quinolones and their chemical diversity to discover newer anticancer agents. The presence of both hydrogen bond donor (-NH) and acceptor (-C=O) functionality in the basic scaffold at two different positions, has broadened the research scope. In particular, substitution at the -NH functionality of the quinolone motif has provided ample space for suitable functionalization and appropriate substitution at the quinolone's third, sixth, and seventh carbons, resulting in selective anticancer agents binding specifically with various drug targets.


Assuntos
Antineoplásicos , Quinolonas , Humanos , Quinolonas/farmacologia , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Desenho de Fármacos
6.
Curr Pharm Des ; 29(13): 1026-1045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013425

RESUMO

Microsponges are polymeric delivery devices composed of porous microspheres that range in size from 5 to 300 micrometers. These have been explored for biomedical applications such as targeted drug delivery, transdermal drug delivery, anticancer drug delivery, and bone substitutes. The purpose of this study is to conduct a comprehensive analysis of recent developments and prospects for a microsponge-based drug delivery system. The current study analyzes how the Microsponge Delivery System (MDS) is made, how it works, and how it can be used for a wide range of therapeutic purposes. The therapeutic potential and patent information of microsponge-based formulations were systematically analyzed. The authors summarize various effective techniques for developing microsponges, such as liquid-liquid suspension polymerization, quasi-emulsion solvent diffusion method, water-in-oil-in-water (w/o/w) emulsion solvent diffusion, oil-in-oil emulsion solvent diffusion, lyophilization method, porogen addition method, vibrating orifice aerosol generator method, electrohydrodynamic atomization method, and ultrasound-assisted microsponge. Microsponge may reduce the side effects and increase drug stability by positively altering drug release. Drugs that are both hydrophilic and hydrophobic can be loaded into a microsponge and delivered to a specific target. The microsponge delivery technology offers numerous advantages over conventional delivery systems. Microsponges, which are spherical sponge-like nanoparticles with porous surfaces, have the potential to increase the stability of medications. They also efficiently decrease the undesirable effects and alter drug release.


Assuntos
Sistemas de Liberação de Medicamentos , Água , Humanos , Emulsões , Composição de Medicamentos/métodos , Solventes
7.
J Biomol Struct Dyn ; 41(22): 12668-12685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744535

RESUMO

Excess of androgens leads to various diseases such as Poly-Cystic Ovarian Syndrome, Prostate Cancer, Hirsutism, Obesity and Acne. 17ß-Hydroxysteroid Dehydrogenase type 5 (17ß-HSD5) converts androstenedione into testosterone peripherally, thereby significantly contributing to the development of these diseases. Indole-bearing scaffolds are reported as potential 17ß-HSD5 inhibitors for the manifestation of diseases arising due to androgen excess. In the present work, we have extensively performed a combination of molecular docking, Gaussian field-based 3D-QSAR, Pharmacophore mapping and MD-simulation studies (100 ns) to identify the pharmacophoric features of indole-based compounds as potent 17ß-HSD5 inhibitors. Molecular simulation studies of the most potent compound in the binding pocket of enzyme revealed that the compound 11 was stable in the binding pocket and showed good binding affinity through interactions with various residues of active site pocket. The Molecular mechanics Generalized Born surface area continuum solvation (MM/GBSA) and Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations revealed that the compound 11 possessed a free binding energy of -36.36 kcal/mol and -7.00 kcal/mol, respectively, which was better as compared to reference compound Desmethyl indomethacin (DES). The developed pharmacophore will be helpful to design novel indole-based molecules as potent 17ß-HSD5 inhibitors for the treatment of various androgenic disorders.Communicated by Ramaswamy H. Sarma.


Assuntos
17-Hidroxiesteroide Desidrogenases , Relação Quantitativa Estrutura-Atividade , Masculino , Humanos , Simulação de Acoplamento Molecular , 17-Hidroxiesteroide Desidrogenases/metabolismo , Simulação de Dinâmica Molecular , Indóis/farmacologia
8.
J Biomol Struct Dyn ; 41(16): 7835-7846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36165610

RESUMO

Cancer is one of the most concerning diseases to humankind. Various treatment strategies are being employed for its treatment, out of which use of natural products is an essential one. Flavonoids have proven to be promising anticancer targets since decades. Also, tubulin is a significant biological target for the development of anticancer agents due to its crucial role in mitosis and abundance throughout the body. In the current study, in silico ADMET parameters of 104 flavonoids were examined, followed by molecular docking with the colchicine binding site of Tubulin protein (PDB; Id 4O2B). The best conformation from each flavonoid subcategory with the best docking score (MolDock score) was further subjected to 100 ns of molecular dynamics to investigate the protein-ligand complex's stability. Different parameters such as RMSD, RMSF, rGy and SASA were calculated for the six flavonoids using molecular dynamic studies. The top most compound from all the six subcategories of flavonoids elicited best behavior in the colchicine binding site of Tubulin protein. This in silico study employing molecular docking and molecular dynamics simulation provides strong evidence for flavonoids to be excellent anti-tubulin agents for the treatment of cancer.Communicated by Ramaswamy H. Sarma.

9.
Curr Pharm Des ; 28(20): 1621-1631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418282

RESUMO

BACKGROUND: Biomedical applications of polymersomes have been explored, including drug and gene delivery, insulin delivery, hemoglobin delivery, the delivery of anticancer agents, and various diagnostic purposes. OBJECTIVES: Polymersomes, which are self-assembled amphiphilic block copolymers, have received a lot of attention in drug delivery approaches. This review represents the methods of preparation of polymersomes, including thin-film rehydration, electroformation, double emulsion, gel-assisted rehydration, PAPYRUS method, and solvent injection methods, including various therapeutic applications of polymersomes. METHODS: Data was searched from PubMed, Google Scholar, and Science Direct through searching of the following keywords: Polymersomes, methods of preparation, amphiphilic block copolymers, anticancer drug delivery. RESULTS: Polymersomes provide both hydrophilic and hydrophobic drug delivery to a targeted site, increasing the formulation's stability and reducing the cytotoxic side effects of drugs. CONCLUSION: Polymersomes have the potential to be used in a variety of biological applications, including drug and gene delivery, insulin delivery, hemoglobin delivery, delivery of anticancer agents, as well as in various diagnostic purposes. Recently, polymersomes have been used more frequently because of their stability, reducing the encapsulated drug's leakage, site-specific drug delivery, and increasing the bioavailability of the drugs and different diagnostic purposes. The liposomes encapsulate only hydrophilic drugs, but polymersomes encapsulate both hydrophilic and hydrophobic drugs in their cores.


Assuntos
Antineoplásicos , Insulinas , Antineoplásicos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Excipientes , Humanos , Polímeros/química
10.
Anticancer Agents Med Chem ; 21(14): 1802-1824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397272

RESUMO

BACKGROUND: Cancer accounts for several deaths each year. There are multiple FDA approved drugs for cancer treatments. Due to the severe side effects and multiple drug resistance, the current drug therapies become ineffective. So, the newer moieties with fewer toxic effects are necessary for the development. OBJECTIVE: The mechanism of indole derivatives as anti-cancer agents with their major target is explored in detail in this article. METHODS: Recent advances and mechanism of indole derivatives as anti-cancer agents are reviewed. This review suggests a detailed explanation of multiple mechanisms of action of various indole derivatives: cell cycle arrest, aromatase inhibitor estrogen receptor regulator, tubulin inhibitor, a tyrosine kinase inhibitor, topoisomerase inhibitors, and NFkB/PI3/Akt/mTOR pathway inhibitors, through which these derivatives have shown promising anti-cancer potential. RESULTS: A full literature review showed that the indole derivatives are associated with the properties of inducing apoptosis, aromatase inhibition, regulation of estrogen receptor and inhibition of tyrosine kinase, tubulin assembly, NFkB/PI3/Akt/mTOR pathway, and HDACs. These derivatives have shown significant activity against cancer cell lines. CONCLUSION: Indole derivatives seem to be important in cancer via acting through various mechanisms. This review has shown that the indole derivatives can further be explored for the betterment of cancer treatment, and to discover the hidden potential of indole derivatives.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Indóis/química , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia
11.
Fitoterapia ; 146: 104720, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32910994

RESUMO

BACKGROUND: Infectious diseases are the leading cause of death in 21st century due to antimicrobial resistance and scarcity of new molecules to undertake rising infections. There could be a multiple reasons behind antimicrobial resistance whether it is increased drug metabolism or bacterial endotoxins. The demand of effective medication is increasing day by day to treat microbial infections and combat antimicrobial resistance. In recent years most of the synthetic antimicrobials developed resistance so natural products could provide better options to fulfill this demand. There has been increasing interest in the research on flavonoids because various flavonoids were found to be effective against pathogenic microorganisms. OBJECTIVE: The objective of this article will be to explore antimicrobial activity of flavonoids with special focus on their possible mechanism of action. METHODS: The article reviewed recent literature related to flavonoids with antimicrobial activity, which were isolated from various sources and the compounds showing fairly good activity against tested microbial species were discussed. RESULTS: By throughout literature review it has been found that flavonoids show antimicrobial effect by inhibiting virulence factors, efflux pump, biofilm formation, membrane disruption, cell envelop synthesis, nucleic acid synthesis, and bacterial motility inhibition. CONCLUSION: Most of the antimicrobial drugs available now a days are ineffective due to development of resistance to them. Flavonoids have the potential to overcome this emerging crisis as this class of natural products showed the antimicrobial activity by different mechanisms than those of conventional drugs, so flavonoid could be an effective treatment of pathogenic infections.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Flavonoides/farmacologia , Compostos Fitoquímicos/farmacologia , Estrutura Molecular
12.
Curr Drug Targets ; 21(14): 1476-1494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32433003

RESUMO

There was a golden era where everyone thought that microbes can no longer establish threat to humans but the time has come where microbes are proposing strong resistance against the majority of antimicrobials. Over the years, the inappropriate use and easy availability of antimicrobials have made antimicrobial resistance (AMR) to emerge as the world's third leading cause of death. Microorganisms over the time span have acquired resistance through various mechanisms such as efflux pump, transfer through plasmids causing mutation, changing antimicrobial site of action, or modifying the antimicrobial which will lead to become AMR as the main cause of death worldwide by 2030. In order to overcome the emerging resistance against majority of antimicrobials, there is a need to uncover drugs from plants because they have proved to be effective antimicrobials due to the presence of secondary metabolites such as terpenoids. Terpenoids abundant in nature are produced in response to microbial attack have huge potential against various microorganisms through diverse mechanisms such as membrane disruption, anti-quorum sensing, inhibition of protein synthesis and ATP. New approaches like combination therapy of terpenoids and antimicrobials have increased the potency of treatment against various multidrug resistant microorganisms by showing synergism to each other.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Farmacorresistência Bacteriana/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Terpenos/farmacologia , Terpenos/uso terapêutico , Animais , Farmacorresistência Bacteriana/fisiologia , Sinergismo Farmacológico , Humanos , Infecções/tratamento farmacológico , Plantas/química , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...